Bayesian nonparametric inference on stochastic ordering
نویسندگان
چکیده
منابع مشابه
Bayesian nonparametric inference on stochastic ordering
This article considers Bayesian inference on collections of unknown distributions subject to a partial stochastic ordering. To address problems in testing of equalities between groups and estimation of group-specific distributions, we propose classes of restricted dependent Dirichlet process (rDDP) priors. These rDDP priors have full support in the space of stochastically ordered distributions,...
متن کاملBayesian Nonparametric and Parametric Inference
This paper reviews Bayesian Nonparametric methods and discusses how parametric predictive densities can be constructed using nonparametric ideas.
متن کاملProbabilistic Programming with Stochastic Memoization Implementing Nonparametric Bayesian Inference
Probabilistic programming is a programming language paradigm receiving both government support [1] and the attention of the popular technology press [2]. Probabilistic programming concerns writing programs with segments that can be interpreted as parameter and conditional distributions, yielding statistical findings through nonstandard execution. Mathematica not only has great support for stati...
متن کاملNonparametric Bayesian inference of the microcanonical stochastic block model.
A principled approach to characterize the hidden structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, w...
متن کاملTruncation-free Stochastic Variational Inference for Bayesian Nonparametric Models
We present a truncation-free stochastic variational inference algorithm for Bayesian nonparametric models. While traditional variational inference algorithms require truncations for the model or the variational distribution, our method adapts model complexity on the fly. We studied our method with Dirichlet process mixture models and hierarchical Dirichlet process topic models on two large data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2008
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asn043